IthaID: 2095



Names and Sequences

Functionality: Disease modifying mutation Pathogenicity: N/A
Common Name: rs7776054 HGVS Name: NC_000006.12:g.135097778A>G

Context nucleotide sequence:
TTTGTAATTTGTGTTCTGCTTCTAC [A/G] ATAGACATTTTTCATGTCATTAGAT (Strand: +)

Also known as:

Comments: SNP associated with HbF level variation in the Cooperative Study of Sickle Cell Disease (CSSCD) and in a sickle cell disease cohort from Brazil. SNP associated with HbA2 levels in individuals from the SardiNIA study.

We follow the HGVS sequence variant nomenclature and IUPAC standards.

External Links

Phenotype

Allele Phenotype (Cis):N/A
Allele Phenotype (Trans):N/A
Associated Phenotypes: Anaemia [HP:0001903]

Location

Chromosome: 6
Locus: NT_025741.15
Locus Location: 39588373
Size: 1 bp
Located at: HBS1L-MYB
Specific Location: N/A

Other details

Type of Mutation: Point-Mutation(Substitution)
Effect on Gene/Protein Function: N/A
Ethnic Origin: African American, Brazilian, Sardinian
Molecular mechanism: N/A
Inheritance: Quantitative trait
DNA Sequence Determined: Yes

In silico pathogenicity prediction

Sequence Viewer

Note: The NCBI Sequence Viewer is not installed on the ITHANET servers but it is embedded in this page from the NCBI. Therefore, IthaGenes has no responsibility over any temporary unavailability of the service. In such a case, please Refresh the page or retry at a later stage. Otherwise, use this external link.

Publications / Origin

  1. Lettre G, Sankaran VG, Bezerra MA, Araújo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH, DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease., Proc. Natl. Acad. Sci. U.S.A. , 105(33), 11869-74, 2008 PubMed
  2. Danjou F, Zoledziewska M, Sidore C, Steri M, Busonero F, Maschio A, Mulas A, Perseu L, Barella S, Porcu E, Pistis G, Pitzalis M, Pala M, Menzel S, Metrustry S, Spector TD, Leoni L, Angius A, Uda M, Moi P, Thein SL, Galanello R, Abecasis GR, Schlessinger D, Sanna S, Cucca F, Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels., Nat. Genet. , 47(11), 1264-71, 2015 PubMed
Created on 2013-09-12 11:51:55, Last reviewed on 2019-07-04 16:12:27 (Show full history)

Disclaimer: The information on this website is provided as an information resource only and must not to be used as a substitute for professional diagnosis and treatment. The ITHANET Portal and IthaGenes are not responsible or liable for any advice, course of treatment, diagnosis or any other information, services or products that an individual obtains through this website.